Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy.

نویسندگان

  • Cecilia Bebeacua
  • Andreas Förster
  • Ciarán McKeown
  • Hemmo H Meyer
  • Xiaodong Zhang
  • Paul S Freemont
چکیده

p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the p97-Ufd1-Npl4 complex.

p97/VCP (Cdc48 in yeast) is an essential and abundant member of the AAA+ family of ATPases and is involved in a number of diverse cellular pathways through interactions with different adaptor proteins. The two most characterized adaptors for p97 are p47 and the Ufd1 (ubiquitin fusion degradation 1)-Npl4 (nuclear protein localization 4) complex. p47 directs p97 to membrane fusion events and has ...

متن کامل

The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism.

The AAA ATPase p97/VCP forms complexes with different adapters to fulfill distinct cellular functions. We analyzed the structural organization of the Ufd1-Npl4 adapter complex and its interaction with p97 and compared it with another adapter, p47. We found that the binary Ufd1-Npl4 complex forms a heterodimer that cooperatively interacts with p97 via a bipartite binding mechanism. Binding site ...

متن کامل

A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways.

The AAA-ATPase, p97/Cdc48p, has been implicated in many different pathways ranging from membrane fusion to ubiquitin-dependent protein degradation. Binding of the p47 complex directs p97 to act in the post-mitotic fusion of Golgi membranes. We now describe another binding complex comprising mammalian Ufd1 and Npl4. Yeast Ufd1p is required for ubiquitin-dependent protein degradation whereas yeas...

متن کامل

Structural Details of Ufd1 Binding to p97 and Their Functional Implications in ER-Associated Degradation

The hexameric ATPase p97 has been implicated in diverse cellular processes through interactions with many different adaptor proteins at its N-terminal domain. Among these, the Ufd1-Npl4 heterodimer is a major adaptor, and the p97-Ufd1-Npl4 complex plays an essential role in endoplasmic reticulum-associated degradation (ERAD), acting as a segregase that translocates the ubiquitinated client prot...

متن کامل

The AAA-ATPase Cdc48/p97 Regulates Spindle Disassembly at the End of Mitosis

Spindle disassembly at the end of mitosis is a complex and poorly understood process. Here, we report that the AAA-ATPase Cdc48/p97 and its adapters Ufd1-Npl4, which have a well-established role in membrane functions, also regulate spindle disassembly by modulating microtubule dynamics and bundling at the end of mitosis. In the absence of p97-Ufd1-Npl4 function, microtubules in Xenopus egg extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 4  شماره 

صفحات  -

تاریخ انتشار 2012